

Ulf Markdwardt, Martin Schroschk

Site Update

NEC-Systems-Bouquet at TU Dresden

June 13th, 2024 / NUG

- Environment: TU Dresden, ZIH, and data center
 - NHR and procurement strategie and cycle
- HPC systems
- Trends and demands

Site Update Ulf Markdwardt, Martin Schroschk Slide 2 of 24

TU Dresden and ZIH

Center for Information Services and High Performance Computing

Site Update Ulf Markdwardt, Martin Schroschk Slide 3 of 24

TU Dresden

- Founded in 1828
- Largest university in Saxony
- One of Germany's eleven Universities of Excellence
- Numbers
 - 28.000 students
 - 8.700 employees
 - Over 600 professorships
 - 120 courses of studies

Site Update Ulf Markdwardt, Martin Schroschk Slide 4 of 24

TU Dresden Campus

Site Update Ulf Markdwardt, Martin Schroschk Slide 5 of 24

LZR - The Lehmann Center Data Center

Site Update Ulf Markdwardt, Martin Schroschk Slide 6 of 24

LZR - The Lehmann Center Data Center II

- 1200 qm of floor space for IT systems
- HPC systems and central IT systems of the TU Dresden
- Highest efficiency is standard here; reuse of waste heat
- 4 MW electrical power for IT services (upgrade to 7 MW is planned)
- Sophisticated, redundant power supply for critical infrastructure
- Annual black building tests are conducted to verify the correct functioning of all infrastructure

ZIH – Center for Information Services and HPC

• Central scientific unit of TU Dresden

Basic IT Services for TU Dresden

• Campus network, email, groupware, data exchange, backup, ...

Computational Science Services

- · Virtual machines, hosting and housing
- High Performance Computing (HPC) since 1997

Research and Development

- Parallel programming and algorithms
- Data Analytics applications, machine learning, ...
- Tools for performance and energy efficiency optimization

Research Project EECliPs

- Increase energy-efficiency of the ICON weather model through the use of heterogeneous clusters
- Target architectures incl. NVIDIA GraceHopper, **NEC SX-Aurora Tsubasa**, Intel Alder Lake, etc.
- ZIH's part: enhance software analysis tools for the target architectures

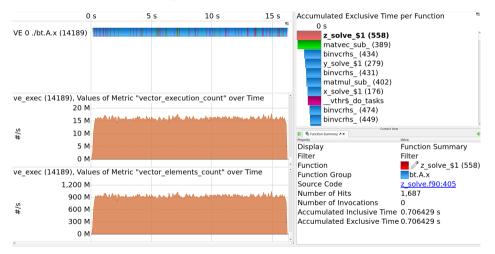
Project

- Partners: DKRZ (German Climate Computing Center), Atos, ParTec, TU
 Dresden
- Period: 09.2022 08.2025
- Funding: Federal Ministry of Education and Research (BMBF)
- Contact and further information: robert.schoene@tu-dresden.de

Tools

Score-P

- Source code instrumentation of HPC applications for profiling and event tracing
- Difficulties with NEC toolchain, C++ standard compliance
- Preliminary support for compiler instrumentation/MPI implemented


lo2s

- Node-level analysis tool utilizing non-invasive low-overhead sources
- Uses **libveos** to sample Vector Engine program counter, record performance monitoring counters
- Vector Engine support upstreamed: https://github.com/tud-zih-energy/lo2s

Example Sampling Trace from *lo2s*

Site Update Ulf Markdwardt, Martin Schroschk Slide 11 of 24

NHR - National High Performance Computing

- Bundle the resources and competencies of university high-performance computing and make them available to scientists at German universities
- User support by providing advice and training in the use of high performance computing in their fields of application
- NHR@ZIH: AI + Live Sciences + Earth System Sciences

Site Update Ulf Markdwardt, Martin Schroschk Slide 12 of 24

Procurement Strategy

W/o NHR

- Every five years
- One large system for about 15 Mio EUR
- Uncertainties due to competition for the same funding pot with other large research projects

W/ NHR

- Planning period is 10 years
- Hardware, maintenance, software licenses, staff, etc.
- New system every two years for about 8-9 Mio EUR
- Island concept: multiple clusters with different capabilities and burst buffer connected together via network

HPC Systems at ZIH

Site Update Ulf Markdwardt, Martin Schroschk Slide 14 of 24

- (two housing systems from other research facilities)
- DLR system; isolated in DLR network
- Five clusters from different vendors all connect via very same InfiniBand fabric
- Good and solution-focused collaboration of all vendors
- NEC provided three clusters and two storage systems
 - NEC is a competent and reliable partner for ZIH

Quobyte (2019)

- Warm archive with 15 PB capacity (incl. S3 option)
- Easy to operate and use
- Issues
 - Small community at the time; covered by agile support from NEC
 - Misconfiguration at initial setup lead to loss of data
- Will be re-used for non-HPC-services

NVMe over Fabrics (2019)

- Fast scratch filesystem for e.g. Al workflows
- 2 PB storage in NVMe; 4 TB/s bandwidth
- 90 NVMe storage nodes
- Plan for future
 - Further operation for three more years w/o maintenance support
 - Challenge: spare parts
 - Fast storage for *Barnard* cluster using WEKA (NEC)
 - Configuration and setup started

Romeo CPU-Cluster (2019)

- General purpose cluster based on AMD Rome CPUs
 - Basically same nodes as CARA
- 192 nodes, each with
 - 2 x AMD EPYC CPU 7702 (64 cores)
 - 512 GB RAM
 - 200 GB local memory on SSD at /tmp
- Slurm, Rocky Linux 8.7
- High availability, high reliability

Alpha Centauri (2021)

- AMD Rome CPUs and NVIDIA A100 GPUs
- Designed for AI and ML tasks
- 37 nodes, each with
 - 8 x NVIDIA A100-SXM4 Tensor Core-GPUs
 - 2 x AMD EPYC CPU 7352 (24 cores)
 - 1 TB RAM
 - 3.5 TB local memory on NVMe device
- Slurm, Rocky Linux 8.7
- Rank 32 in Green500 (June 2022) with 15.8 Gflops/watts

Alpha Centauri (2021) II

Great system, but

- High failure rate and long repair cycle (~ 6 w)
- Multiple causes
 - Supply bootleneck and high demand
 - Quality of GPUs
 - Not sufficient testing phase
 - Too few manpower in L2/L3 service
- No follow-up maintaince contract (years 4-5)

CARA

- General purpose cluster based on AMD Naples and Rome CPUs
- Specifically designed for CFD simulations and workflows
- 2168 nodes, each with
 - 2 x AMD EPYC CPU 7601 (32 cores)
 - 128 GB up to 256 GB RAM
- 664 nodes, each with
 - 2 x AMD EPYC CPU 7702 (64 cores)
 - 256 GB up to 1 TB RAM
 - 40 nodes with local memory on NVMe SSD
 - 10 nodes with 4 x NVIDIA A100 GPUs

CARA II

Storage

- Two Lustre systems
 - Bulk
 - 16.518 PB in total
 - Flash-based metadata system
 - Fast
 - Scratch filesystem for high IOPs and also /home
 - 600 TB in total
 - Flash-based metadata system with high metadata performance

Users

- > 200 active users per month
- > 700 unique active users since start of operation
- 29 DLR institutes can access and make use of CARA

Site Update Ulf Markdwardt, Martin Schroschk Slide 22 of 24

Trends and Demands

- Continuing increase in demand for HPC resources
 - New research groups and areas test and apply AI methods for their fields
- Disaster recovery
 - Time limit 24 h
 - Ansible and git
- Network
 - InfiniBand not set; open for alternatives
- DLR: Increasing diversity in use cases and workflows

Site Update Ulf Markdwardt, Martin Schroschk Slide 23 of 24

Thank you for your attention.

Site Update Ulf Markdwardt, Martin Schroschk Slide 24 of 24

