

A feasibility study of quantum annealing for the next-generation computing infrastructure

## A Constraint Partition Method for Efficiently Solving Combinatorial Optimization Problems

NUG XXXV 2024 Kazuhiko Komatsu Tohoku University 13 June, 2024

# Agenda



## Introduction of feasibility study of quantum computing

• Quantum annealing group by NEC and Tohoku Univ.

## **Evaluation of annealing machines [QCE23, Komatsu]**

 Performance investigations of Quantum and Quantum-inspired annealing machines

## A Constraint Partition Method for Combinatorial Optimization Problems [MCSoC23, Onoda]

Constraint Partion toward large constraint optimization problems



# Feasibility studies (2022/08~2025/03)

## Overview

R&D of essential technologies to develop the next-gen. computing infrastructure

#### System team

- Architecture
- System software
- applications

## 



## **Operation technology**

Operation-related technologies

## **New computational principles**

- Quantum supercomputing
  - Hybrid computing by QC, QA, SC

supercomputer



Quantum computer

# FS of new computational principals

## **Overview**

- Evaluate the feasibility of "quantum supercomputing" by hybrid computing of HPC and quantum computing
  - Study on architecture, system software, and algorithms of quantum supercomputing



тоноки

supercomputer

Quantum computer





# **Activities of Annealing Group**

#### Performance Evaluation of Quantum and Pseudo-Quantum Annealing Machines

- Investigation of Annealing Machines through Performance Evaluation and Analysis
  - Study of Annealing Machines and Their Evaluation Methods
  - Development of Benchmarks for Evaluation
  - Performance Comparison of Various Annealing Machines

#### Investigation of the Application of Quantum and Pseudo-Quantum Annealing Technologies

- Research and Development Status
- Case Studies of Utilization



## **Quantum Annealing teams**

ORepresentative



13 June, 2024





# Introduction of feasibility study of quantum computing Quantum annealing group by NEC and Tohoku Univ.

## **Evaluation of annealing machines [QCE23, Komatsu]**

 Performance investigations of Quantum and Quantum-inspired annealing machines

## A Constraint Partition Method for Combinatorial Optimization Problems [MCSoC23, Onoda]

Constraint Partion toward large constraint optimization problems



# Varieties of Ising machines

## Annealing

- Quantum annealing
  - Analog circuits with quantum effects
    - QA using superconducting quantum circuit by D-Wave Systems, Inc
- Simulated (Quantum-inspired) annealing
  - Use of digital processors such as CPU, GPU, and VE
    - D-wave Neal, Fixstars Amplify Engine, Vector Annealer, and so on
- Dedicated annealing machine
  - Dedicated digital circuits such as CMOS and FPGA
    - Hitachi CMOS Annealer, and so on

## **Bifurcation**

- Bifurcation machines
  - Controlled by the pitchfork bifurcation phenomena
    - Toshiba Simulated bifurcation machine (SBM), NTT Coherent Ising machine (CIM),

## Experimental conditions: Annealing machines



| Machines                             | Hardware                 | Max # bits | # bits fully | Connectivity  | Bit precision   | Services |
|--------------------------------------|--------------------------|------------|--------------|---------------|-----------------|----------|
| D-wave 2000Q                         | Quantum circuit<br>QPU   | 2,048      | 64           | Chimera graph | Analog 5 bits   | Cloud    |
| D-wave Advantage                     | Quantum circuit<br>QPU   | 5,760      | 124          | Pegasus graph | Analog 5 bits   | Cloud    |
| D-wave Advantage2                    | Quantum circuit<br>QPU   | 563        |              | Zephyr graph  | Analog 5 bits   | Cloud    |
| D-wave Leap Hybrid                   | QPU + Digital<br>circuit | N/A        | N/A          | N/A           | N/A             | Cloud    |
| D-wave Neal                          | CPU                      | N/A        | N/A          | Fully         | Digital 64 bits | Local    |
| NEC Vector Annealer                  | VE Type 20B              | 100,000+   | 100,000+     | Fully         | Digital 32 bits | Local    |
| Fixstars Amplify<br>Annealing Engine | Nvidia A100              | 262,144    | 131,072      | Fully         | Digital         | Cloud    |
| Hitachi CMOS<br>Annealer             | GPU                      | 61,952     | 176          | King graph    | Digital 3bits   | Cloud    |
| Toshiba SBM                          | GPUs                     | 10,000,000 | 10,000,000   | Fully         | Digital         | Cloud    |



13 June, 2024

14

## Difficulty



- Bit precision is required for the Lagrange multiplier
- $H = \frac{1}{2} \sum_{i,j=1}^{N} d(x_i, x_j) \sum_{a=1}^{K} q_a^i q_a^j + \sum_{i=1}^{N} \lambda_i (\sum_{a=1}^{K} q_a^i 1)^{\frac{2}{-8}}$

The objective function The loses its properties

The Objective Function

#### The Constraint Function



N = 200, One-Hot



## **Experimental condition: Dataset**

#### **Artificial data**

- Number of clusters 3, Number of data 8~4096
- The reference solution: the lowest result obtained among all executions.

#### Number of trials: 100 for each machine, each data





## **Evaluation metrics**

## TTS(Time to solution)

- Execution time to reach the certain precision solution
  - TTS =  $\gamma_{anneal}R + T_{others}$ 
    - $\gamma_{anneal}$  : Annealing time
    - R: Annealing times to obtain the reference solution  $R = \frac{ln(1-p_R)}{ln(1-p_R)}$
    - *T<sub>others</sub>*: Time for the other than annealing such as QUBO generation
- The certain precision solution is the answer label

## **Cost (Accuracy)**

- Sum of distances within the same cluster for all clusters
- The lower the value, the higher the quality of the solution

## **Execution time**



## Visualization results (16 data points)





- VA-Ex < VA-In < AE < Neal < 2000Q < Leap < Advantage < CMOS</li>
  - High accuracy clustering and fast execution time

- TTS cannot be calculated when a large amount of data
  - Insufficient number of qubits (2000Q, Advantage, CMOS)
  - Insufficient bit precision (Leap, Neal, VA-In)

## Cost normalized the answer label



2000Q Advantage Advatage2 proto Hybrid CQM Neal VA Amplify SQBM+ CMOS



NUG XXXV 2024

Others: large variation ٠

- - Do not reach the answer solution • No plots due to inability to run by the lack of bits ٠





#### **Evaluation of Ising machines**

- Performance Comparison of Domestic and International Quantum Annealing Machines, Pseudo-Quantum Annealing Machines, and Pseudo-Branching Machines
  - D-wave, NEC, Fixstars, Toshiba, Hitachi
- Evaluation Benchmarks
  - Utilization of Ising Machines for Clustering
    - Problems that become increasingly difficult with larger datasets
- Evaluation Metrics
  - Time to Solution (TTS), Accuracy, Constraint Violation Rate, Execution Time
- Insights
  - Number of Bits, Bit Precision, Connection Methods, Mechanisms and Capabilities for Escaping Local Minima

# Agenda



## Introduction of feasibility study of quantum computing

• Quantum annealing group by NEC and Tohoku Univ.

## **Evaluation of annealing machines [QCE23, Komatsu]**

• Performance investigations of Quantum and Quantum-inspired annealing machines

## A Constraint Partition Method for Combinatorial Optimization Problems [MCSoC23, Onoda]

Constraint Partion toward large constraint optimization problems

## **Constraints Problems**

#### **Constraints in combinatorial optimization problems**

- Constraints integrated into the Hamiltonian
- Increasing the Hamiltonian when constraints are violated

#### The constraint function have an excessive influence

• Difficulty in reducing *H* of the objective function

#### ⇒ Resulting in a decrease in the solution accuracy



#### constraint function

$$H = \lambda \sum_{k} C_{k} + \sum_{i,j} Q_{ij} x_{i} x_{j}$$

Setting penalty coefficients  $\lambda$  enough **large** 



# **Objective and Approach**

## Objective

 To improve the solution accuracy for constraint problems using Ising machines

## Approach

- Partitioning a constraint function into terms
  - Assigning small penalty coefficients



## **A Constraint Partition Method**

#### Partitioning constraint functions to reduce the Hamiltonian

• Setting different coefficients  $\lambda_k$  for each term of constraints

# The influence of the constraint function is reduced $\rightarrow$ Improvement of the solution quality



# An example using TSP

#### Partitioning the constraint function to apply the different penalty coefficients for each city

• Setting  $\lambda_i^c$  for the *i*-th city

#### A city constraint for City A

- No need to consider for distances between cities B-C or B-D, C-D
- the distance between city A and the other cities
- A city constraint function has a different penalty coefficient from those of the other cities

   → The city constraints should be partitioned

A city constraint A time constraint  

$$H = \sum_{i=1}^{N} \lambda_i^c \left(1 - \sum_{t=1}^{N} x_{i,t}\right)^2 + \left(\lambda_i^t \sum_{t=1}^{N} \left(1 - \sum_{i=1}^{N} x_{i,t}\right)^2\right) + \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=1}^{N} d_{i,j} x_{i,t} x_{j,t+1}$$

$$\lambda_{i=i_0}^{c} = \max(d_{i=i_0,j}), \lambda^{t} = \max(d_{i,j})$$
NUG XXXV 2024

Β

29

Α









## **Experimental environments**

## **Ising machines**

- Fixstars Amplify AE
  - Nvidia V100

### Datasets

• TSPLIB, burma14, bays29, eil51, eil76

## **Number of trials**

• 100

## The metric

• Total distance of the route

## **Parameters**

- Timeout
- Constraint relaxation rates

| 29, eil51, <sup>-</sup> |         | burma14 | bays29 | eil51 | eil76 |  |
|-------------------------|---------|---------|--------|-------|-------|--|
|                         | timeout | 10      | 100    | 1000  | 1000  |  |

# **Circuit length of TSP**



conventional proposal



• The proposed method achieves a shorter circuit length



## Summary

## **Constraint partition method**

- To improve the solution accuracy of constraint problems using Ising machines, partitioning a constraint function into terms
  - Assigning small penalty coefficients
- Experimental results shows that the proposed method significantly improves the quality of solutions



## Conclusions

## Feasibility study of quantum computing

• Quantum annealing group by NEC and Tohoku Univ.

## **Performance Evaluation of Ising machines**

 Performance investigations of Quantum and Quantum-inspired annealing machines

## A Constraint Partition Method for Combinatorial Optimization Problems

Constraint Partion toward large constraint optimization problems