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Agenda
Introduction of feasibility study of quantum computing

• Quantum annealing group by NEC and Tohoku Univ.

Evaluation of annealing machines [QCE23, Komatsu]
• Performance investigations of Quantum and Quantum-inspired 

annealing machines

A Constraint Partition Method for Combinatorial 
Optimization Problems [MCSoC23, Onoda]

• Constraint Partion toward large constraint optimization problems
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Feasibility studies (2022/08~2025/03)
Overview

• R&D of essential technologies to develop the next-gen. computing 
infrastructure 

System team
• Architecture
• System software
• applications

Operation technology
• Operation-related technologies

New computational principles
• Quantum supercomputing

• Hybrid computing by QC, QA, SC
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FS of new computational principals
Overview

• Evaluate the feasibility of “quantum supercomputing”
by hybrid computing of HPC and quantum computing

• Study on architecture, system software, and algorithms of quantum 
supercomputing

Teams
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Activities of Annealing Group
Performance Evaluation of Quantum and Pseudo-Quantum 
Annealing Machines

• Investigation of Annealing Machines through Performance Evaluation and 
Analysis

• Study of Annealing Machines and Their Evaluation Methods
• Development of Benchmarks for Evaluation
• Performance Comparison of Various Annealing Machines

Investigation of the Application of Quantum and Pseudo-
Quantum Annealing Technologies

• Research and Development Status
• Case Studies of Utilization

13 June, 2024 NUG XXXV 2024 6



Quantum Annealing teams
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Overview
Introduction of feasibility study of quantum computing

• Quantum annealing group by NEC and Tohoku Univ.

Evaluation of annealing machines [QCE23, Komatsu]
• Performance investigations of Quantum and Quantum-inspired 

annealing machines

A Constraint Partition Method for Combinatorial 
Optimization Problems [MCSoC23, Onoda]

• Constraint Partion toward large constraint optimization problems
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Varieties of Ising machines
Annealing

• Quantum annealing
• Analog circuits with quantum effects

• QA using superconducting quantum circuit by D-Wave Systems, Inc
• Simulated (Quantum-inspired) annealing

• Use of digital processors such as CPU, GPU, and VE
• D-wave Neal, Fixstars Amplify Engine, Vector Annealer, and so on

• Dedicated annealing machine
• Dedicated digital circuits such as CMOS and FPGA

• Hitachi CMOS Annealer, and so on

Bifurcation
• Bifurcation machines

• Controlled by the pitchfork bifurcation phenomena
• Toshiba Simulated bifurcation machine (SBM), NTT Coherent Ising machine (CIM), 
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Experimental conditions:
Annealing machines
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Machines Hardware Max # bits # bits fully Connectivity Bit precision Services

D-wave 2000Q Quantum circuit
QPU 2,048 64 Chimera graph Analog 5 bits Cloud

D-wave Advantage Quantum circuit
QPU 5,760 124 Pegasus graph Analog 5 bits Cloud

D-wave Advantage2 Quantum circuit
QPU 563 Zephyr graph Analog 5 bits Cloud

D-wave Leap Hybrid QPU + Digital 
circuit N/A N/A N/A N/A Cloud

D-wave Neal CPU N/A N/A Fully Digital 64 bits Local

NEC Vector Annealer VE Type 20B 100,000+ 100,000+ Fully Digital 32 bits Local

Fixstars Amplify 
Annealing Engine Nvidia A100 262,144 131,072 Fully Digital Cloud

Hitachi CMOS 
Annealer GPU 61,952 176 King graph Digital 3bits Cloud

Toshiba SBM GPUs 10,000,000 10,000,000 Fully Digital Cloud



Benchmark: 
Combinatorial clustering
QUBO of Combinatorial Clustering [Kumar, 2018]

• Formulated using the method of the Lagrange multiplier
• 𝐻 = !

"
∑#,%&!' 𝑑 𝑥#, 𝑥% ∑(&!) 𝑞(# 𝑞(

% + ∑#&!' 𝜆#(∑(&!) 𝑞(# − 1) "
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Difficulty
Solving problems when size is large

• Bit precision is required for the Lagrange multiplier
• 𝐻 = !

"
∑#,%&!' 𝑑 𝑥#, 𝑥% ∑(&!) 𝑞(# 𝑞(

% + ∑#&!' 𝜆#(∑(&!) 𝑞(# − 1) "
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The Objective Function The Constraint Function

= +

N = 200, One-Hot

The Objective 
Function

The Constraint 
Function

The QUBO 
Function

The objective function
loses its properties

The limitation of
the bit precision

Optimization becomes difficult for problems with a large number of data points
due to the large gap between the distance and the Lagrange multiplier (d << λ )



Experimental condition:
Dataset
Artificial data

• Number of clusters 3, Number of data 8~4096
• The reference solution: the lowest result obtained among all executions.

Number of trials: 100 for each machine, each data
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Evaluation metrics
TTS(Time to solution)

• Execution time to reach the certain precision solution
• TTS = 𝛾!""#!$𝑅 + 𝑇%&'#()

• 𝛾!""#!$ 	: Annealing time
• 𝑅: Annealing times to obtain the reference solution 𝑅 = %" &'(!

%"(&'("#$$%"")
	

• 𝑇+,-#./: Time for the other than annealing such as QUBO generation
• The certain precision solution is the answer label

Cost (Accuracy)
• Sum of distances within the same cluster for all clusters
• The lower the value, the higher the quality of the solution

Execution time
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Visualization results (16 data points)
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TTS

• VA-Ex < VA-In < AE < Neal < 2000Q < Leap < 
Advantage < CMOS

• High accuracy clustering and fast execution time

• TTS cannot be calculated when a large amount of data
• Insufficient number of qubits (2000Q, Advantage, CMOS)
• Insufficient bit precision (Leap, Neal, VA-In)
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Cost normalized the answer label

• VA-Ex, AE: Cost equivalent to the answer 
solution

• Others: large variation

• 16 or more data points
• Do not reach the answer solution
• No plots due to inability to run by the lack of bits
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Summary
Evaluation of Ising machines

• Performance Comparison of Domestic and International Quantum Annealing 
Machines, Pseudo-Quantum Annealing Machines, and Pseudo-Branching 
Machines

• D-wave, NEC, Fixstars, Toshiba, Hitachi
• Evaluation Benchmarks

• Utilization of Ising Machines for Clustering
• Problems that become increasingly difficult with larger datasets

• Evaluation Metrics
• Time to Solution (TTS), Accuracy, Constraint Violation Rate, Execution Time

• Insights
• Number of Bits, Bit Precision, Connection Methods, Mechanisms and Capabilities for 

Escaping Local Minima

13 June, 2024 NUG XXXV 2024 24



Agenda
Introduction of feasibility study of quantum computing

• Quantum annealing group by NEC and Tohoku Univ.

Evaluation of annealing machines [QCE23, Komatsu]
• Performance investigations of Quantum and Quantum-inspired 

annealing machines

A Constraint Partition Method for Combinatorial 
Optimization Problems [MCSoC23, Onoda]

• Constraint Partion toward large constraint optimization problems
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Constraints Problems
Constraints in combinatorial optimization problems

• Constraints integrated into the Hamiltonian 
• Increasing the Hamiltonian when constraints are violated 

The constraint function have an excessive influence
• Difficulty in reducing 𝐻 of the  objective function
⇨ Resulting in a decrease in the solution accuracy
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Objective and Approach
Objective

• To improve the solution accuracy for constraint problems using 
Ising machines

Approach
• Partitioning a constraint function into terms 

• Assigning small penalty coefficients
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A Constraint Partition Method
Partitioning constraint functions to reduce the Hamiltonian

• Setting different coefficients 𝜆* for each term of constraints

The influence of the constraint function is reduced 
→  Improvement of the solution quality
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An example using TSP
Partitioning the constraint function 
to apply the different penalty coefficients for each city 

• Setting 𝜆#/	 for the 𝑖-th city
A city constraint for City A 

• No need to consider for distances between cities B–C or B-D, C-D
• the distance between city A and the other cities
• A city constraint function has a different penalty coefficient from those of the other cities 

→ The city constraints should be partitioned
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Experimental environments
Ising machines

• Fixstars Amplify AE
• Nvidia V100

Datasets
• TSPLIB, burma14, bays29, eil51, 

eil76 
Number of trials

• 100
The metric

• Total distance of the route

Parameters
• Timeout
• Constraint relaxation rates
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burma14 bays29 eil51 eil76
timeout 10 100 1000 1000
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Summary
Constraint partition method

• To improve the solution accuracy of constraint problems using Ising 
machines, partitioning a constraint function into terms 

• Assigning small penalty coefficients
• Experimental results shows that the proposed method significantly 

improves the quality of solutions
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Conclusions
Feasibility study of quantum computing

• Quantum annealing group by NEC and Tohoku Univ.

Performance Evaluation of Ising machines
• Performance investigations of Quantum and Quantum-inspired 

annealing machines

A Constraint Partition Method for Combinatorial 
Optimization Problems

• Constraint Partion toward large constraint optimization problems
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