Maximum Efficiency

For Any HPC/AI Workload

Axel Rosenberg | Sr. Systems Engineer | DACH NUG XXXIV20-06-23

Why

- Compute workload isolation
- -> flexible Processor utilization
- -> better Application performance
- -> easy Client Qos

- Storage Hardware Economics
- -> maximum Value of your HW
- -> affordable Data placement
- -> linear (Meta) Data scaling

This is Important

Key Takeaways

Energy

Storage server resource efficiency

Performance

Application server performance optimization

Intelligence

(Meta) Data management and scalability

6

11

16

<dpdk nic> - MLNX CX5 or newer; Intel E810, some Intel 10Gb NICs, vmmet3 udp - any NIC supported by Linux, including virtualized ones. Core dedication control (relevant DPDK mounts) - _____dedicated_mode<fullingne> --_uses RX interrupts instead of "spinning on a core core pinning ("affinization") -o core=48,core=49,net.s1-2=ibp12s0,core=50,core=51,net.s3-4=ibp18s0

leka Configurator (Cores) ————		
lost Configuration Reference		
Cores per host: 24		
Drives per host: 6		
Number of hosts: 5		
lion:		
Enghle Protocols		
[] Protocols are Primary		
DRIVES over COMPUTE		
Cores for OS: 2		
ores for Protocols: 0		
Usable Weka Cores: 22		
Used Weka Cores: 22		
FE Cores: 1		
DRIVES Cores: 6		

Data Management Efficiency 7.66 4.9K 7.66 1% /opt/weka/data/agent/ 4.6T 4826 4.1T 11% /mnt/weka 1.66 9% /run/user/1000 mofs efault mpfs [root@node1 weka]# du -had 1 /mnt/weka/ /mnt/weka/csi-volumes /mnt/weka/data /mnt/weka/data3 /mnt/weka/data2

17

/mnt/weka/

7

12

÷★

Client Container resou	urce alignment
DPDK mount -o net=enp225s0f1 / ib0	wskofsgw • It tells the VIS layer what system calls we can do, e.g. read, write, lockup and so on.
-o num_cores=2/4/8 -o core=16 -o core=63 -o net:s1-2=enp186s0 -o net:s3- 4=enp12s0 - areas ob=230000	 FE fetches IO and suddanly discovers that it cannot complete if due to choiring in this case FE returns special error; code on the IO and OW knows that it should replay the OW will replay all IOs that were in the middle of processing by the FE
-0 memory_mp=32000	wekafsio - Gets requests from the gateway driver and relays them to the FE
	 The main driver manages two queues, one for metadata (higher priority) and another for reads and writes
	 The queue size is flexible and each request can be in a number of states: Free -> Allocated -> FE Pending -> Sent -> Repled Front End node manages similar queue on its end
Becce Fed Filsufaite MINA [®] Rapida y ed Ceñterial 0201	N we

13

18

Linux PageCache

WEKA vs OTHERFS

Stateless client: Read & Writes

t - neither reads or writes are cached.

4k random Competitor Comparison

inux PageCache control vritecache – writes and reads are cached. This is the default for POSIX mounts.

9

Client QoS

WEKA QOS is placed on the client container

be set with a "quard

Works for bondwidth and ICPS (read and write)

Preferred should be known cluster performance

Low priority allows for over subscription – burst while other jobs are not using much IO

There is an option to set this globally for all clients, you can then av

nteed value" and a "burst value

referred should not be oversubscribed - This is the limit per container at or below the know uster performance (known cluster performance/client containers = <u>GB/s and IOFS value</u>)

Own coloccom ift_{it} Binha processing pattern (Binhad'T Node Basel) Con Princip .

Thank You!

20

∃★

Workload

WEKA User-Space Containers

Software components

WEKA

Stateless client: Cores & NICs

Common mounting options

Frontend processes control

• -o num_cores=<1|2|4|...> -- controls the number of the FRONTEND drivers

Network device control

- -o net=<dpdk_nic|udp>
 - <dpdk_nic> MLNX CX5 or newer; Intel E810, some Intel 10Gb NICs, vmxnet3
 - udp any NIC supported by Linux, including virtualized ones.

Core dedication control (relevant DPDK mounts)

-o dedicated_mode=<full|none> -- uses RX interrupts instead of "spinning on a core"

Multi-NIC mounting with or without core pinning ("affinization")

- -o num_cores=4,net=<nic1>, net=<nic2>
- -o core=48,core=49,net:s1-2=ibp12s0,core=50,core=51,net:s3-4=ibp18s0

HA mounting

• -o num_cores=6,net:ha=ibp97s0f0,net:ha=ibp225s0f0,mgmt_ip=10.0.4.102+10.0.10.102

Client Container resource alignment

DPDK mount

- -o net=enp225s0f1 / ib0
- -o num_cores=2/4/8
- -o core=16 -o core=63
- -o net:s1-2=enp186s0 -o net:s3-4=enp12s0
- -o memory_mb=32000

wekafsgw

- It tells the VFS layer what system calls we can do, e.g. read, write, lookup and so on.
- FE fetches IO and suddenly discovers that it cannot complete it due to choking. In this case FE returns special error code on the IO and GW knows that it should replay such IO from the beginning. Second reason is FE crash, the GW will replay all IOs that were in the middle of processing by the FE
- wekafsio
 - Gets requests from the gateway driver and relays them to the FE
 - The main driver manages two queues, one for metadata (higher priority) and another for reads and writes
 - The queue size is flexible and each request can be in a number of states: Free -> Allocated -> FE Pending -> Sent -> Replied
 - Front End node manages similar queue on its end

WEKA QOS is placed on the client container

Works for bandwidth and IOPS (read and write).

There is an option to set this globally for all clients, you can then override with a mount option with -o remount.

This can be set with a "guaranteed value" and a "burst value"

Preferred should be known cluster performance

Preferred should not be oversubscribed - This is the limit per container at or below the known cluster performance/client containers = GB/s and IOPS value)

Low priority allows for over subscription – burst while other jobs are not using much IO

Resources

Leveraging HW resources at the most optimal mix including NUMA intelligence and power management.

Backend Core Efficiency

WEKA MCB (Multi Container Backend) Lets you assign your processors for Hardware and Software resources dynamically.

Weka Configurator for MCB

WEKA 4.1 ~		Website	Support Downloads/Lic	censing AWS Self-Service Porta	al Q Search
WEKA v4.1 documentation			List of block devices		🖉 Copy link
WEKA SYSTEM OVERVIEW	device-paths	Space-separated list	that identify local SSDs, e.g.,	Must be a valid Unix	ON THIS PAGE

About the WEKA system

SSD capacity management

Filesystems, object stores, and filesystem groups

WEKA networking

Data lifecycle management

WEKA client and mount modes

WEKA containers architecture overview

Glossary

GETTING STARTED WITH WEKA

Quick installation guide

Manage the system using the WEKA CLI

Manage the system using the WEKA GUI

Run first IOs with WEKA filesystem

Getting started with WEKA REST API

ce-paths	Space-separated list	List of block devices that identify local SSDs, e.g.,	Must be a valid Unix
	of strings	/dev/nvme0n1	network device name
		/dev/nvmeln1	

(i) Note: If, due to some technical limitation, the use of an NVMe device through the kernel is required, contact the Customer Success Team.

8. Configure the CPU resources

Command: weka cluster container cores

This stage in the installation process is used to configure the number of CPU resources, which are physical rather than logical cores. To perform this operation, use the following command line:

weka cluster container cores <container-id> <cores> [--frontend-dedicated-cores <frontend-dedicated-cores>] [--drives-dedicated-cores <drives-dedicated-cores>] [-cores-ids <cores-ids>] [--compute-dedicated-cores <compute-dedicated-cores>] [-only-drives-cores] [--only-compute-cores] [--only-frontend-cores]

Parameters

lame	Туре	Value	Limitations
container-id	String	Identifier of the container in which a core count is	Must be a valid container identifier

e WEKA soft... Stage 2: Formation of a cl. 2. Create a cluster from . 3. Set a name for the clu. 4. Enable event notificat. Stage 5: Set containers d.. 5. Set containers dedica. 6. Configure the networ... 7. Configure the SSDs 8. Configure the CPU re.. 9. Configure the memor.. 10. Configure failure do ... 11. Configure WEKA sys. 12. Configure hot spare ... Stage 13: Apply container. 13. Apply containers co... 14. Verify the containers. 15. Set a license 16. Run the Start IO co...

ЖΚ

Data Management Efficiency

WEKA's zero-copy architecture enables intelligent data placement. Revolutionize research and results by managing data-oceans transparently to your (AI)-compute farm.

On-prem, hybrid and Multi-Cloud. WEKA runs anywhere.

Weka Zero Copy Architecture

Weka Zero Copy Architecture in Practice

What is SENSA

https://sensa.biomedit.ch/index.html#infrastructure

The Secure sENSitive data processing plAtform (SENSA) offers biomedical researchers a full service for the processing of sensitive data, from a tailored compute and storage environment to expertise in data protection and bioinformatics support. SENSA being connected to the national network of secure IT infrastructures (BioMedIT), it also acts as a gateway to the Swiss Personalized Health Network (SPHN.ch) to enable nationwide biomedical projects. SENSA is provided by the University of Lausanne and the SIB Swiss Institute of Bioinformatics, and builds on over 15 years of experience in operating high performance computing infrastructure for biomedical researchers.

Weka Zero Copy Architecture

What is SENSA

hi

The Secure sENSitive data processing plAtform (SENSA) offers biomedical researchers a full service for the processing of sensitive data, from a tailored compute and storage environment to expertise in data protection and bioinformatics support. SENSA being connected to the national network of secure

si Infrastructure features

SENSA is created following the principle of "data protection by design", and implemented through a dedicated technical architecture that enforces the latest standard, in security, data protection and service virtualization. The platform offers the following features:

- Epurypted transfer and storage
 - Encrypted data transfer into and out of the platform via a Secure File Transfer Service
 - Superior data protection via an encrypted storage system (WekalO)
 - Unless agreed otherwise, the infrastructure providers have no access to the data
 - Access control
 - Access to the platform restricted to trusted network locations such as white-listed IP addresses or ranges (incl. VPN)
 - Federated identity management via SWITCH edu-ID, including 2-factor authentication
 - Isolation of distinct project spaces via virtualization based on OpenStack teenhology, compliant with the legal requirements for sensitive personal data
 - Users interact with the platform through remote desktop in web browser (via Apache Guacamole web application) or through Secure Shell (SSH)-based terminal
- Hardware resources

The factor is and do accordent

- \circ 10 CPU nodes with 40 cores each (400 CPU cores in total) 64 to 512 GB RAM
- 2 GPU nodes with 20 cores each (graphics cards for optimised computation) 64 GB RAM
- 200 TB of encrypted storage

The hardware listed above is dynamically allocated to projects via the virtualization system OpenStack. If a scientific project needs more physical resources than currently available, the compute and storage capacity can be extended on demand.

https://sensa.biomedit.ch/index.html#infrastructure

Flexible, easy to use & reliable

Data Management Efficiency

weka fs tier s3 add myS3 --site local -hostname=s3.localdomain.org --port=80 -bucket=weka-HPC-AI --access-keyid=AKIA3EOCJV63VELPTTWY --secretkey=8PN+XWkDUa53JI94UtqTdwrivM/opjtPK 6CSuZi3 --auth-method=AWSSignature4

weka fs tier s3 attach <fs-name>
<obs-name> [--mode mode]

Data Management Efficiency

Data Management Efficiency

tmpfs	7.6G	4.9K 7.6G	1% /opt/weka/data/ager	nt/tn
default	4.6T	482G 4.1T	11% /mnt/weka	
tmpfs	1.6G	0 1.oG	0% /run/user/1000	

WEKA vs Local NVMe

		/ / 4 / 11									
issued rwts: total=0,1249493,0,0 short=0,0,0,0 dropped=0,		, iuiu	/ 4/61/0								
latency : target=0, window=0, percentile=100.00%, dept	rootware	00:~#									
Run status group 0 (all jobs):	top - 13	3:49:2	1 up 19	days	s, 55 mir	1, 0 43	CIS , 100	d aver	age: 1	97.68, 120	.84, 92.37
WPITE: $hw = 26$ 7GiB/e (28 7GB/e) 26 7GiB/e 26 7GiB/e (28 7GB)	Tasks: 2	2 750 t	otal,	2 r	unning	2 745 sle	eping,	0 stop	p.d.	3 zombie	
WRITE: DW-20.7010/3 (20.700/3/, 20.7010/3-20.7010/3 (20.700)	%Cpu(s)	. 0.1	us. 0 .	7 5	/. 6 9 r	ni. 30.9	id. 68.3	S wa.	0.0 hi	0.0 si	0.0 st
Diele state (meed/white).	MiR Mom	. 102	1971 ±+/	+-1	9590.1	4 froo	29522	lucod	2527	7 0 buff/	
Disk stats (read/write):	MID Mem	. 105	10/1.+((00000	4 Tree,	38533.4	• useu	1352/	7.0 buii/(Mam
md127: 10s=693/10692498, merge=0/0, t1cks=0/0, 1n_queue=0,	MIR Swal	:	0.0 to	σται	9	Ø Tree,		, used.	98802	5.2 avail	мет
nvme0n1: ios=14/1333226, merge=0/3686, ticks=6/5930341, in_c											
nvme6n1: ios=14/1333162, merge=0/3708, ticks=5/3955353, in_c	PID	USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+	COMMAND
nvme9n1: ios=709/1334830, merge=0/26157, ticks=734/11635935,	11900	root	20	0	9491440	225468	24048 S	6.2	0.0	1135:44	nvsm core
nvme5n1: ios=14/1333124, merge=0/3472, ticks=7/3584518, in_c	4141930	root	20	0	318312	104496	50436 S	7.9	0.0	0:12.54	fio
nvme8n1: ios=14/1333106, merge=0/3506, ticks=7/19338552, in_	3685945	root	20	0	7730272	99808	23940 S	0.3	0.0	51:55.84	weka
nvme1n1: ios=14/1333110, merge=0/3627, ticks=5/12946548, in_	16717	root	20	ø	4499288	83276	20048 S	0.0	0.0	70:53.46	nysm ani dat
nvme4n1: ios=14/1333130, merge=0/3466, ticks=6/3689937, in_c	2706264	root	20	Â	4959/00	7900/	20040 0	0.0	0.0	2.10 42	chond
nyme7n1: ios=14/1333148, merge=0/3550, ticks=8/4742643, in a	3700204	1000	20	0	0030400	78704	20052 3	0.0	0.0	3.17.03	shapu
root@a100:~# fig fig job axel localsection=W1024ds	11892	root	20	0	98/9.1m	/1012	50632 S	0.0	0.0	38:54.31	aockera
W102(de: (q-0): rw-rw be-(D) 102(KiP-102(KiP-102))	4141968	root	20	0	253104	51352	2236 D	1.0	0.0	0:01.26	fio
WI02403. (g-0). IW-IW, DS-(K) 1024KID-1024KID, (W) 1024KID-102	4142107	root	20	0	253656	51332	2216 D	1.0	0.0	0:01.22	fio
	4141975	root	20	0	253132	51328	2212 D	1.0	0.0	0:01.28	fio
T10-3.35	4141979	root	20	a	253148	51328	2212 D	1 0	a a	0.01 20	fio
Starting 230 processes	4140105	root	20	0	253140	51200	210/ D	0.7	0.0	0.01.10	fio
<pre>Jobs: 230 (f=230): [W(230)][49.0%][w=25.2GiB/s][w=25.8k IOPS]]</pre>	4142105	1000	20	0	253648	21300	2184 D	0.7	0.0	0:01.19	110
	4142102	root	20	a	253636	51284	2152 D	Q 7	a a	0.01 24	†10

WEKA vs Local NVMe

upid=0, jobs=230): err= 0: pid=4155038: Tue Jun 1 =35.7k, BW=34.8GiB/s (37.4GB/s)(1253GiB/35960msec c): min=973, max=92411, avg=6439.68, stdev=4444.3 s): min=20535, max=50103, per=100.00%, avg=35747.	Mount completed successfully root@a100:~#
<pre>: min=20475, max=50038, avg=35687.13, stdev=28. : usr=0.64%, sys=0.16%, ctx=1286213, majf=0, mi : 1=100.0%, 2=0.0%, 4=0.0%, 8=0.0%, 16=0.0%, 32 : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 6</pre>	top - 14:00:13 up 19 days, 1:00, 9 users, load overage: 199.69, 177.45, 140.9 Tasks: 2839 total, 16 running, 2821 sleeping, 0 stopped, 2 zombie %Cpu(s): 5.2 us, 5.5 sy, 0.0 ni, 89.4 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st MiB Mem : 1031871.+total, 829612 9 free, 61585.4 used, 140675.6 buff/cache MiB Swap: 0.0 total 0.0 free, 0.0 used 961677.6 avail Mem
wts: total=0,1282803,0,0 short=0,0,0,0 dropped=0,	
: target=0, window=0, percentile=100.00%, depth	h PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
	4147767 root 20 0 9778876 1.8g 523944 R 100.7 0.2 7:47.77 wekanode
oup 0 (all jobs):	4147771 root 20 0 9778876 1.8g 523504 R 100.7 0.2 7:47.60 wekanode
4.8GiB/s (37.4GB/s), 34.8GiB/s-34.8GiB/s (37.4GB/	4147773 root 20 0 9778876 1.8g 527404 R 100.7 0.2 7:47.83 wekanode
fio fio.job.axelsection=W1024ds	4147787 root 20 0 9778876 1.8g 523648 R 100.7 0.2 7:47.60 wekanode
): rw=rw, bs=(R) 1024KiB-1024KiB, (W) 1024KiB-102	4147750 root 20 0 9778876 1.8g 526312 R 100.3 0.2 7:47.86 wekanode
	4147751 root 20 0 9778876 1.8g 524080 R 100.3 0.2 7:47.75 wekanode
	4147752 root 20 0 9778876 1.8g 523504 R 100.3 0.2 7:47.90 wekanode
processes 10)• [/(1) w(1) /(12) w(1) /(5) w(1) /(54) w(2) /	,4147777 root 20 0 9778876 1.8g 523896 R 100.3 0.2 7:47.76 wekanode
33)• [/(1) W(2) /(5) W(1) /(5) W(2) /(4) W(1) /(2	4147779 root 20 0 9778884 1.8g 523960 R 100.3 0.2 7:47.86 wekanode
230) · [W(230)][1 6%][w=36 3GiB/s][w=37 2k TOPS][e	4147780 root 20 0 9778876 1.8g 523960 R 100.3 0.2 7:47.69 wekanode
(230): $[W(230)][7.6%][W=36.7GiB/s][W=37.6k TOPS][6]$	4147790 root 20 0 9778876 1.8g 523568 R 100.3 0.2 7:47.74 wekanode
	4156193 root 20 0 253344 51424 2344 S 14.4 0.0 0:02.45 fio
	4156083 root 20 0 252908 51360 2280 S 13.8 0.0 0:02.44 fio

WEKA vs OTHERFS

4k random Competitor Comparison

HPC/AI & Multicloud aka Cloud-Bursting

Search Marketplace

 \bigcirc

Products > Weka® Data Platform

Weka® Data Platform 🗢 Save to my list

Overview

WEKA

Plans + Pricing Ratings + reviews

WEKA Data Platform is the fastest storage platform for compute accelerated applications.

Get It Now

Pricing information Price varies

Categories AI + Machine Learning Storage

Support Support Help

Legal License Agreement Privacy Policy Experience up to 10x data pipeline velocity improvements over traditional and cloud-based storage solutions, saving time and money.

Application environments that need low-latency access to millions of small files and high bandwidth for large files have limited storage options. The WEKA Data Platform combines dense NVMe storage of Azure Virtual Machine Lsv3-series instances with Azure Blob Storage in a single, efficient namespace, for your high-performance workloads, scaling to billions of files and hundreds of petabytes. It has a rich feature set that includes transparent object tiering, instantaneous snapshots, snap-to-object (remote clouds), backup, disaster recovery ("DR"), encryption, quotas, Active Directory integration, Kubernetes CSI driver, and much more. The WEKA Data Platform supports multiple file service protocols including full POSIX, NFS, SMB and S3, with full data share-ability across protocols. The WEKA Data Platform delivers the speed, simplicity and scalability for demanding workloads including Al, machine learning, visual effects rendering, genomics, high frequency trading, data analytics, and software builds.

Q

HPC/AI & Multicloud aka Cloud-Bursting

with ur Requiren	nents			View all Your Options					
CAPACITY Total Capacity	500	тв 🛩	0	Instance Type	Cluster Size	Usable Capacity (TB)	IOPS (K)	BW (Gbytes/sec)	
Tiering	SSD Only	SSD+S3		i3en.2xlarge	150	596.0	Up to 2,001	Up to 69.6	Deploy to AWS
PERFORMA	ANCE		9	i3en.6xlarge	66	780.0	Up to 2,020	Up to 91.4	Deploy to AWS
IOPsIR/W	BW	%		i3en.3xlarge	151	900.0	Up to 2,009	Up to 109.9	Deploy to AWS
IOPs	2000	К		i3en.12xlarge	45	1,056	Up to 2,030	Up to 129.2	Deploy to AWS
Region	EU (Frankfurt)		^ 0	i3en.24xlarge	38	1,776	Up to 2,052	Up to 219.1	Deploy to AWS

Show Less

Template

Template URL

https://getwekaio--release-files-prod.s3.amazonaws.com/ja0n5xqj6z7jkirej99p4mfz.json

Stack description

[WekaIO] To learn more about this template visit https://docs.weka.io/install/aws/cloudformation

Stack name
Stack name
NUG-XXXIV-EGELSBACH
Stack name can include letters (7-Z and a-z), numbers (0-9), and dashes (-).

Parameters

Parameters are defined in your template and allow you to input custom values when you create or update a stack.

Network Configuration

VPC

VPC ID in which the cluster would be installed

vpc-08bfb202987808993

Thank You!

in @wekaio

🕞 /wekaio

🈏 @wekaio

28 WEKA[®] Proprietary and Confidential. © 2023