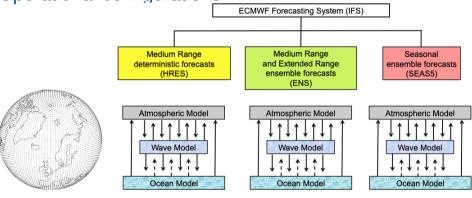
IFS components on NEC SX Aurora TSUBASA

CloudSC and ecRAD

Fatemeh Pouyan, Ioan Hadade, Olivier Marsden

fatemeh.pouyan@ecmwf.int

European Centre for Medium-Range Weather Forecasts



The European Centre for Medium-Range Weather Forecasts

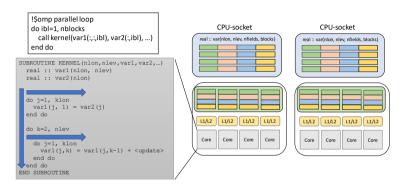
- Independent intergovernmental organisation
- Established in 1975, today supported by
 23 member and 12 cooperating states
- Headquarters in Reading (UK), data centre in Bologna (IT), Offices in Bonn (DE)
- Research institute and 24/7 operational service:
 - produce and disseminate NWP
 - operate meteorological data archive
 - implement Copernicus services CAMS and C3S
 - provide computing resources to member states

Operational configurations

Forecast period **Ensemble members** Frequency Resolution

10 days 2x daily TCo1279L137 (9km)

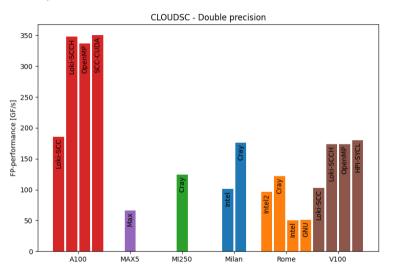
15 days / 46 days 51 2x daily / 2x weekly TCo639L137 (18km) / TCo319L137 (36km)


7 months / 13 months 51 / 15 monthly / quarterly TCo319L91 (36km)

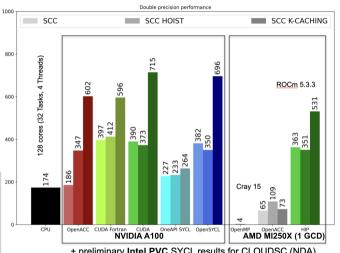
CLOUDSC: the IFS cloud scheme

- is one of the 7 physical process parameterizations in the IFS
- describes the effects of cloud microphysics on humidity-related variables in an atmospheric column
- is the largest single-scope bottleneck in an atmospheric IFS time-step

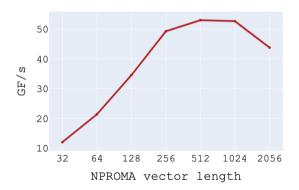
- the cloud scheme is representative of a significant fraction of atmospheric computational cost - the physical parameterisations
 - no horizontal dependencies in the physical processes
 - horizontal direction, first dimension of storage and work arrays, used for vectorization
 - no indirect addressing in horizontal dimension
- each vertical "column" involves small-array solve with loop-carried dependency



- CLOUDSC was one of the original ESCAPE¹ "dwarfs"
- more recently, released open-source on github under Apache-2 licence: https://github.com/ecmwf-ifs/dwarf-p-cloudsc
- thanks to EU project work (ESCAPE, EUROEXA, EUPEX, DestinationEarth) and open sourcing, has been ported to, and tested on, many platforms
- CPUs (Intel, AMD, ARM, A64FX, ...), GPUs (Nvidia, AMD, Intel, Apple), FPGA
- was used as playground to develop source-to-source framework with which physics code is being compile-time targetted for GPUs


¹the ETP4HPC ESCAPE project http://www.hpc-escape.eu

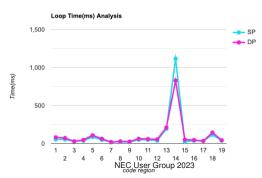
CLOUDSC - performance taster


CLOUDSC - latest taste updates!

- preliminary porting very easy : platform mostly "just works"
- investigation of effect of vector length (NPROMA)

 Our SX-AT 20B accelerator is nominally 2.45 TFLOPs DP - low fraction of peak

 Our SX-AT 20B accelerator is nominally 2.45 TFLOPs DP - low fraction of peak


■ ftrace - NPROMA 256

FREQUENCY	EXCLUSIVE	AVER.TIME	MOPS	MFLOPS	V.OP	AVER.	П	VECTOR	1CACHE	CDII DODT	VID IIC	PROC.NAME
	TIME[sec](%)	[msec]	HOFS	HI-LOF3		V.LEN	П	TIME	MISS		HIT E.%	PROC. NAME
							П					
640	3.259(79.2)	5.092	36360.0	16546.6	98.16	254.1		2.573	0.125	0.002	90.13	CLOUDSC
80	0.410(10.0)	5.130	36086.8	16422.3	98.16	254.1	П	0.325	0.016	0.000	89.92	-thread0
80	0.409(9.9)	5.112	36216.6	16481.4	98.16	254.1		0.323	0.016	0.000	90.52	-thread1
80	0.405(9.8)	5.059	36594.5	16653.3	98.16	254.1	П	0.319	0.015	0.000	90.09	-thread2
80	0.405(9.8)	5.059	36595.0	16653.6	98.16	254.1		0.319	0.015	0.000	90.43	-thread3
80	0.405(9.8)	5.057	36610.2	16660.5	98.16	254.1	П	0.319	0.015	0.000	89.83	-thread4
80	0.404(9.8)	5.056	36620.4	16665.1	98.16	254.1		0.319	0.015	0.000	89.78	-thread5
80	0.410(10.0)	5.130	36086.3	16422.0	98.16	254.1	П	0.324	0.016	0.000	90.11	-thread6
80	0.410(10.0)	5.131	36083.9	16421.0	98.16	254.1		0.324	0.016	0.000	90.40	-thread7
19	0.338(8.2)		19749.7	9250.4		229.1	П	0.336	0.001	0.000		VALIDATE_MOD::VALIDATE_R2
499	0.157(3.8)	0.393	16242.7	0.0	88.05	72.7		0.144	0.004	0.000	99.99	EXPAND MOD::EXPAND R2\$1

Optimisation efforts

- hot-spot profiling with Ftrace API
- main per-loop results :
 - SP is not very efficient out of the box for this code (many loops get no more than 10% improvement)
 - single loop dominates the cost

■ Main culprit in expensive region is a sorting loop

```
DO JN=1,NCLV
DO JL=KIDIA,KFDIA
IF (LLINDEX1(JL,JN) .AND. ZRATIO(JL,JN)<ZMIN(JL)) THEN
IORDER(JL,JM)=JN
ZMIN(JL)=ZRATIO(JL,JN)
ENDIF
ENDDO
ENDDO
```

Main culprit in expensive region is a sorting loop

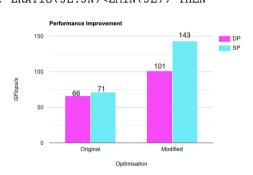
```
DO JN=1,NCLV

DO JL=KIDIA,KFDIA

IF (LLINDEX1(JL,JN) .AND. ZRATIO(JL.JN)<ZMIN(JL)) THEN

IORDER(JL,JM)=JN

ZMIN(JL)=ZRATIO(JL,JN)


ENDIF

ENDDO

ENDDO

101

ENDDO
```

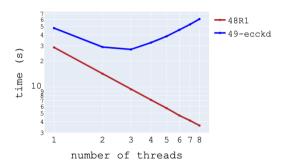

Data structure ordering

- input-output array ordering (HOR, VERT, FLD, BLOCK) vs (HOR, FLD, VERT, BLOCK)
- ordering of local arrays with NCLV dimension
- almost no effect at all!

Performance update (thank you NEC DE!)

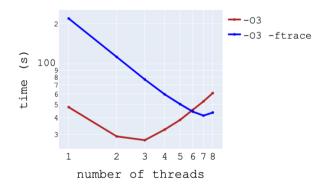
Performance update (thank you NEC DE!)

	VE 2	VE 3 (compatibility)	VE 3 (native)
VE SKU	20B	30A	30A
thread count	8	16	16
GF/s DP	103.3	199.6	205.3
GF/s SP	142.8	277.6	290.5



ecRAD - NEC SX-Aurora TSUBASA

- radiation scheme developed by R Hogan at ECMWF
- used by a number of academic research groups and weather centres
- now released open-source: https://github.com/ecmwf-ifs/ecrad
- stand-alone execution mode, stand-alone coding style
- Work has just started


ecRAD - NEC SX-Aurora TSUBASA

threads	48R1	49R1 - ecckd
1	28.6	47.7
2	14.2	28.9
3	9.4	27.1
4	7.1	32.5
5	5.7	38.4
6	4.7	45.5
7	4.1	52.7
8	3.6	60.7

ecRAD - NEC SX-Aurora TSUBASA

Effect of -ftrace compiler option

